Velocity distributions of granular gases with drag and with long-range interactions.
نویسندگان
چکیده
We study velocity statistics of electrostatically driven granular gases. For two different experiments, (i) nonmagnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy tail is exponential, P(upsilon) approximately exp(-/upsilon/). This behavior is consistent with the kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.
منابع مشابه
Velocity distributions in dilute granular systems.
We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. F...
متن کاملNumerical simulation of hydrodynamic properties of Alex type gliders
Simulation of an underwater glider to investigate the effect of angle of attack on the hydrodynamic coefficients such as lift, drag, and torque. Due to the vital role of these coefficients in designing the controllers of a glider and to obtain an accurate result, this simulation has been studied at a range of operating velocities. The total length of the underwater glider with two wings is 900 ...
متن کاملCrucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases.
Our experiments and three-dimensional molecular dynamics simulations of particles confined to a vertical monolayer by closely spaced frictional walls (sidewalls) yield velocity distributions with non-Gaussian tails and a peak near zero velocity. Simulations with frictionless sidewalls are not peaked. Thus interactions between particles and their containers are an important determinant of the sh...
متن کاملSlow Drag in 2D Granular Media
We study the drag force experienced by an object slowly moving at constant velocity through a 2D granular material consisting of bidisperse disks. The drag force is dominated by force chain structures in the bulk of the system, thus showing strong fluctuations. We consider the effect of three important control parameters for the system: the packing fraction, the drag velocity and the size of th...
متن کاملGranular gases: dynamics and collective effects
We present a biased review of some of the most ‘spectacular’ effects appearing in the dynamics of granular gases where the dissipative nature of the collisions leads to a rich phenomenology, exhibiting striking differences with equilibrium gases. Among these differences, the focus here is on the illustrative examples of the ‘Maxwell demon’-like experiment, modification of Fourier’s law, nonequi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 6 شماره
صفحات -
تاریخ انتشار 2005